FBGA 2023 Annual Meeting, 11/21/2023
Bamboo Production Quantification
Methods and Overview
Donald L. Rockwood Florida FGT LLC, Gainesville, FL
What Do You Get When
You Cross Bambi With A Ghost?
Applying Forest Inventory Methodology to Bamboo

Yield Components

Yield = f(Genetics, Environment, Age)

Genetics = f(Genotype, Propagation)

Environment= f(Management, Site, Weather)

Management = f(Planting Density, Site Amendment, Weed Control)

Age = f(Rotation Length)

Predict Product Content

Bamboo Products: Food, Fiber, Carbon Sequestration, Etc.

Collaboration with Dr. Davie and Crew: Kondwani, Noor, Aaron, Cyrus, William

atout	06/08/	2023	4-C	ulm S	amp	le: Culm	Green V	Veight (G	N, Ibs.) Pre	edictio
						Sample	Data			
Culm	B	D	DB	H	TH ft	BD^2	BD^2TH	DBH^2	DBH^2TH	GW
1"	1.1	12	0.7	7	12.7	1.26	16.01	0.59	7.51	2.5
2"	1.9	95	1.8	7	25.8	3.81	98.22	3.50	90.38	15.7
3"	2.9	99	2.3	1	30.0	8.92	267.53	5.32	159.52	25.0
4"	3.8	30	2.8	5	34.0	14.46	491.67	8.12	276.01	37.5
2	GW	B	D	DE	G H	W = b0 + BD^2	b1 x Vari DBH^2	able BD^2TH	DBH^2TH	-
-	GW	B	D	DE	н	BD ²	DBH ²	BD^2TH	DBH^2T	1
_	2.5	3.	35	0.7	2	5.66	2.45	6.30	3.88	+
	15.7	13	.72	18.	89	11.97	16.06	11.93	14.60	+
	25.0	26	.68	26.	04	24.64	24.53	23.53	23.55	1
:	37.5	36	.90	35.	00	38.39	37.62	38.89	38.62	
	b0	-10	.71	-11.	95	2.53	-0.31	5.21	2.91	
	b1	12	.52	16.	48	2.48	4.67	0.07	0.13	
	r^2	0.9	88	0.9	69	0.962	0.999	0.950	0.990	
	F	646	6.83	634	18	629.685	654.25	621.70	648.02	
sal Diamet	er, DBH=Di	ameter a	4.5', TH	=Culm He	ight, BD	*2=BD squared,	DBH*2=DBH squ	ared, BD^2TH= B	D squared * TH, DB	H^2TH=DBH

Fatout 06/08/2023 4-Culm Sample: Culm Fiber Green Weight (GW, Ibs) Prediction, Moisture Content, and Field Drying

GW=2.479*BD^2+2.531

Predicted GWs for BDs 1-6"				
BD	GW			
1	5.01			
2	12.45			
3	24.85			
4	42.20			
5	64.52			
6	91.79			

Moisture Content (%, DW) At Felling – 255.8

Field Drying (%, GW) 1 month – 51.8 2 months – 44.4

	-
	Current
	Current + Short-term Forecast
	Current + Full Rotation
	Rotation Length
	Fieldwork Options
F	Plot Location: Random, <mark>Systematic</mark>
Plot	Shape: Circular, <mark>Square</mark> , <mark>Rectangular</mark>
PI	ot Duration: Temporary, <mark>Permanent</mark>

Inventory Goals

Sampling Intensity: Fixed, Precision/Confidence

Inventory	Summaries	for I	Four	Farms:
-----------	-----------	-------	------	--------

Plot Shape, Size, Configuration, and Numbers of Plots, Clumps and Culms, Area, Coefficients of Variation (CV) for Clumps/Plots and Plots, Sampling Intensity, Achieved Precision, and Number of Plots for 10% Precision

	Fatout	Merrick	MFA	Hi Hat
Plot Shape	Square	Rectangular	Rectangular	Rectangular
Plot Size	30' x 30'	80' x 8'	80' x 8'	50' x 18'
Plot Configuration	3 rows x 3 clumps	6 rows x 1 clump	6 rows x 1 clump	3 rows x 2 clumps
No. of Plots	3	12	8	8
Total Clumps	27	72	48	48
Total Culms	430+	1,322+	941+	901+
Area (acres)	3	27	10	15.7
CV Clumps/Plots (%)	94-108	30-147	22-71	37-79
CV Plots (%)	16	23	13	18
Sampling Intensity (%)	2.1	0.7	1.2	1.1
Achieved Precision (+%)	38	38	11	15
Plots for 10% Precision	49	68	9	18

Across Farms Analysis of Variance (ANOVA) for Basal Area/Acre								
	df	Mean Square	F					
Farms	3	4.098	1.62					
Plots(Farm)	27	2.523	1.25					
Clumps(Plots(Farms))	154	2.018						
Culms(Clumps(Plots(Farms)))	2891							
Fatout ANOVA for Basal Area/Acre								
Plots	2	5.985	2.91					
Clumps(Plots)	18	2.053	3.75**					
Culms(Clumps(Plots))	326	.547						
Merrick ANOVA for Basal Area/Acre								
Plots	11	3.711	1.54					
Clumps(Plots)	56	2.413	6.30**					
Culms(Clumps(Plots))	955	.3829						
Similar ANOVAs for Basal Area/Acre at MFA and Hi Hat								

